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Abstract 

We report the results of a next-to-leading order event generator of purely glu- 

onic jet production. This calculation is the first step in the construction of a full 

next-to-leading order calculation of three jet production at hadron colliders. Several 

jet-algorithms commonly used in experiments are implemented and their numerical 

stability is investigated. 
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1 Introduction 

In this paper we report the first step in constructing a Next-To-Leading order (NLO) three 
jet event generator for hadron colliders. This involves the construction of the pure gluonic 
contribution to this cross section. The calculation combines the one loop virtual matrix 
elements gg + ggg [l] with the real matrix elements gg --+ gggg [2, 3, 4, 5, 6, 71. The 
major issue we want to address in this letter is the convergence and numerical stability of 

the NLO event generator. The jet algorithm is an integral part of the observed final state 
and is needed to define the NLO 3-jet cross section. Unlike the NLO 2-jet calculation, the 
NLO 3jet calculation is sensitive to many details of the jet algorithm. This is because of 
the presence of the 4-parton final state, which by applying the jet algorithm is converted 
into either a 2-, 3- or 4-jet final state. A complete understanding of this partitioning into 
different numbers of jets requires a careful study of the details of different jet algorithms. 
For this paper we consider four algorithms : 

(a) The “fixed-cone” algorithm, used by UA2 [8] 

(b) The “iterative-cone” algorithm, used by CDF [9] and DO [lo]. 

(c) The LLK~” algorithm [ll], under study by CDF and DO [12]. 

(d) The “EKS” algorith m, used in NLO l-jet and 2-jet inclusive calculations [13]. 

In section 2 we will describe the methods and techniques used in the event generator 
in some detail. Section 3 describes and investigates the stability of the four jet-algorithms. 
Some distributions are shown in section 4 as an illustration of the achievable numerical 
accuracy of the event generator. No attempt is made for a detailed phenomenological study; 
this only makes sense once the quark contributions have been included. Finally, in section 5 
we summarize the findings of the study. 

2 The method 

The construction of a flexible event generator requires the generation of partonic final states 
with a minimal amount of implicit phase space integration. At Leading Order (LO) this is 
trivial, but at NLO it requires careful handling of the cancellation of divergences between 
the soft/collinear contributions and the virtual corrections. The divergences stem from the 
fact that at NLO a parton can only be defined through a resolution criterion. This resolution 
criterion can take many forms, from a simple invariant mass cut to a full blown fragmentation 
function. For the studies in this paper a simple invariant mass resolution criterion, s,.,,;,,, 
suffices. That is, if the invariant mass of two partons is smaller that s,,, they are considered 
to be unresolvable and treated as a single parton by integrating out the unresolved phase 
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space. This isolates the unresolved soft/collinear region of phase space from the resolved 
bremsstrahlung phase space. After this rearrangement, both the resolved contribution and 
the combination of the unresolved soft/collinear contributions with the virtual corrections 
are finite 114, 151. 

With the above method it is easy to calculate the soft/collinear contributions. The next 
step is to use this calculation to construct a NLO event generator. There are in principle 
three methods of putting together the resolved partonic cross sections in order to make the 
NLO jet event generator. In order of complexity they are: 

(a) “The slicing method”, in which both matrix element and phase space are approximated 

[16] in the soft/collinear region. 

(b) “The subtraction method”, in which the phase space is still approximated in the 
soft/collinear region, but the matrix element is now exact (by adding in the correction 
factor numerically) [ 171. 

(c) “The exact method”, in which both the correction factors for the phase space and 
matrix elements in the unresolved region are added in numerically [18]. 

Method (a) is used to analytically calculate the soft/collinear region. To be able to 
perform the integrations and extend the method to arbitrary partonic processes one has 
to approximate both the matrix element and the phase space in the soft/collinear region. 
For any useful and numerically stable event generator method (b) is often sufficient. In 
a numerical calculation it is trivial to extend method (a) to method (b). Method (c) is 
attractive because there are no approximations. That is, no terms of order s,;, have been 
neglected and one can choose the resolution parameter as large as one wants without changing 
the results. This method, however, is more cumbersome to implement. 

One can describe the different methods better using a schematic formula. The n-parton 
contribution to the (n - 1)-jet cross section is given by 

k = IM,12 x J, dPS, 

= (lM,12 x (1 - 6) + IM,12 x 0,)) x J,, d%, 

= jM,/’ x (1 - S,)J, dPS, + 8, x (T&) + Tz(&) + T@s)) > (1) 

where the n-parton differential cross section d u,, is given by the matrix element squared, 

IJW$, and the phase space constraints from the jet algorithm and cuts, Jn, integrated 
over the n-parton phase space dPS,. The soft/collinear unresolved part of phase space is 
separated off using the resolution criterion embodied in the quantity B,, which takes the 
value 0, = 1 in the unresolved phase space region and 8, = 0 otherwise. 

Tl is given by 

T@s) = S (M,-112 x J,,-1 d PS,,f, dPS,.el 

= R(8,) IM,-112 x J,.,ml dPS,ml , 
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and represents the integral of the approximate matrix element j/tiM,12 + S ]M,-i]2 over 
the approximate phase space dPS, + dPS,,f, dPS,-i. The resolution factor R(B,) is 
independent of the hard scattering and can be calculated analytically for a wide range of 
multiparton processes [14, 151. T2 is given by 

w4) = (/:Mn12 - s IMn-4 i’) x J, dPS, ) (3) 

and represents the integral over the true unresolved phase space of the difference between 
the true matrix element and the approximate matrix element. ra is given by 

7’3(&) = S jM,-1 I2 (A dPS, - A,-1 dPS,sl dPSsoft) , (4) 

and represents the difference between the integrals of the approximate matrix element over 
the true unresolved phase space and the approximate unresolved phase space. Note that Z’r 
contains the soft and collinear divergences needed to cancel the singularities of the virtual 
term, while 2’2 and Ta vanish as the domain of support for fJ5 is taken to zero. 

Method (a) keeps Tr, but sets 7’2 = 373 = 0, method (b) keeps both Tr and T2: but sets 
T3 = 0, while method (c) keeps all th ree terms. The terms proportional to the soft factor S 
cancel between T2 and T3 so that the final expression for method (c) is somewhat simplified. 
The advantage of method (c) is that the 0,-dependence exactly cancels for any value of 
this resolution parameter. The drawback is that apart from the usual negative weighted 
virtual plus soft/collinear and positive weighted bremsstrahlung contributions we have now 
an additional type of negative weighted events which numerically cancel the subtraction term 
R(8,). This can often be confusing, especially when one chooses large values of 8,, because 
one has a different phase space constraint on this type of bremsstrahlung term. Using method 
(b) removes these additional events, but now we must choose 8, to be sufficiently small that 
the phase space approximations are valid. In general this poses no problem and in practice 
this is the method we use. The effects of the three methods can easily be demonstrated 
numerically. The s,,,-d ependence of methods (a) and (b) are shown in fig. 1 for several jet 
algorithms. We postpone the discussion of these dependences to section 4. 

3 Jet Algorithms 

The purpose of the jet algorithm is to quantify certain topological features of hadronic energy 
flow in scattering processes. By identifying high transverse momentum hadronic clusters 
in collisions we can make a connection with the underlying partonic scattering and apply 
perturbative QCD to predict the cross section. The form of the jet algorithm depends to a 
large extent on the capability of the detector and on the collision environment. Theoretical 
issues are only of secondary importance. A stable experimental jet algorithm is, by definition, 
theoretically infrared safe. There are of course issues of perturbative convergence, but the 
experiment (and implicitly the data) should d e ermine the jet algorithm not vice versa. t 
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With current techniques for theoretical calculations one can easily accommodate any 
stable experimental jet algorithm. The only crucial theoretical issue is a reliable estimation 
of the theoretical uncertainties. This is why the NLO predictions for observables are so 

important. By comparing NLO with LO we can determine the regions of phase space where 
we can make reliable predictions and give estimates of the uncertainty. There is no point 
“improving” predictions without a clear understanding of the theoretical uncertainties in the 
“improved” predictions. 

The extension of the NLO a-jet calculation to NLO 3-jet is non-trivial with respect to 
the jet algorithm as we will now explain. The algorithms usually depend on a cone-size or 
distance scale between the clusters: 

R = +I)” + (A@” , (5) 
where An is the difference in pseudorapidity and Ac$ the difference in azimuthal angle. When 
combining clusters of energy one usually uses transverse energy-weighted (ET-weighted) 
clustering: 

ETOT = 
T c 

El’) 
T 

i 

1 
<q> = - c 

Et’) 
T % 

i 
(6) 

op> = &C E$)h * 
i 

We will now summarize our implementations of the four jet algorithms under consideration: 

(a) The “fixed-cone” algorithm 
This algorithm was used by UA2 and is described in some detail in ref. [8]. This 
algorithm is the most basic and straightforward of all the four algorithms we are 
considering. The procedure is very simple: 

1. Form a cluster list, ordering all clusters by ET. 

2. Select the highest ET-Cluster from the cluster-list and draw a cone of radius R 

around the cluster axis. Calculate the transverse jet energy and a new jet-axis 
by performing the ET-weighted sum of all the clusters in the cone as defined in 
eq. 6. 

3. Remove all clusters in the cone from the cluster-list and move the jet to the jet-list. 

4. If the cluster-list is not empty go to step 2. 

5. Apply the appropriate minimum transverse energy and rapidity cuts to the entries 
in the jet-list to find the final set of jets. 

Note that all of the basic physics involved in the clustering is already contained in 
the 3 parton final states (i.e. NLO 2-jet production or LO 3-jet production). No 
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(b) The “iterative-cone” algorithm 
Both CDF and DO use this algorithm. While it is clearly based on the “fixed-cone” jet 
algorithm, there are important additions. The algorithm is given by 

1. Form a cluster list, ordered by ET. 

2. Select the highest unassigned ET-Cluster, and draw a cone of radius R around 
the axis of this cluster. Calculate the transverse jet energy and a new jet-axis by 
merging the clusters in the cone as in eq. 6. 

3. Draw a new cone around the new jet-axis. Recalculate the jet-axis using the 

clusters in the new cone. Repeat this step until a stable jet-axis is found. 

4. If there are clusters not yet assigned to at least one jet, go to step 1. 

5. Check for overlapping clusters, i.e. clusters assigned to two or more jets. If 
overlaps occur, one has to decide whether to merge the jets or to assign the 
overlapping clusters to separate jets. CDF and DO have different methods for 
doing this. CDF merges the jets if any of the overlapping jets shares more than 
75% of its ET. Otherwise each shared cluster is assigned to the jet to whose axis 
it is closest in 71-4 space. DO merges the jets if any jet shares more that 50% of 
its transverse energy. Otherwise the shared transverse energy is divided equally 
between the two jets. 

6. Once all clusters have been uniquely assigned to jets, the final jet parameters are 
calculated, but not using the ET-weighted scheme of eq. 6. For both CDF and DO, 
the energy and momentum 3-vector are calculated by simply adding the 4-vectors 
of the clusters assigned to the jet, and the direction of the jet is given by the sum 
of the momentum 3-vectors. CDF computes the transverse energy of the jet as 
E sin 8, where E is the energy calculated above, and 0 is the polar angle of the jet 
direction. DO computes the transverse energy as the scalar sum of the transverse 
energies of the component clusters. It is worth mentioning that ref. [19] recently 
argued that the DO procedure of defining the final jet parameters leads to large 
perturbative corrections and therefore should not be used. 

7. Apply the appropriate minimum transverse energy and rapidity cuts to the entries 
in the jet-list to find the final set of jets. 

(4 

Note that in this case, unlike the “tied-cone” algorithm, a lot of the physics is missing 
in the 3-parton final state, where there is never an iteration nor is there ever shared 
energy. To get all the basic physics one needs at least 4 parton final states, or in other 
words NNLO a-jet, NLO 3-jet or LO 4-jet production. In fact for NLO 2-jet and LO 
3 jet the “iterative-cone” algorithm is identical to the “fixed-cone” algorithm. 

The “EKS” algorithm 
The fact that that the NLO 2-jet calculation does not contain all the needed physics in 

matter how many additional partons are added to the final state, each will be assigned 
unambiguously to a jet. 
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the jet algorithms used by CDF and DO inspired the authors of ref. [13] to introduce an 
“improved” algorithm which phenomenologically modeled the missing physics. Because 
this is a theoretical algorithm we will describe it in terms of partons. In NLO 2-jet 
production we have only to consider the 3 parton final state. The algorithm is then 

very simple: 

1. Consider the possible 2-parton configurations by calculating their ET-weighted 
jet axis as if they were clustered. 

2. If both partons are within the cone size R of the hypothetical jet axis they are 
merged into a single jet. 

3. Go to step 1 until all 2 parton configurations have been considered. 

4. Apply the appropriate minimum transverse energy and rapidity cuts to the entries 
in the jet-list to find the final set of jets. 

Note that this maximizes the energy in the cone and simulates the “iterative-cone” 
algorithm by assuming that it always find the optimum jet-axis to maximize the en- 
ergy in a jet. This in fact overestimates the clustering effects of the “iterative-cone” 
algorithm. To correct for this an additional parameter called Rig was introduced [20]. 
With this parameter one can impose the additional constraint that only 2-parton pairs 
separated by less than R x $2 can be clustered. Experimentally it was found that 

R$ = 1.3 worked best for R = 0.7 [21]. Note that the quantity R!Z,i has no equivalent 

in experimental jet algorithms and is a purely phenomenological quantity. The Rpd 
prescription was tuned to the NLO 2-jet calculation, and there are many possible ways 
to extend it to the NLO 3-jet calculation. We choose to do the following: 

1. Consider the possible 3-parton configurations by calculating their ET-weighted jet 
axis as if they were clustered. If the three partons are within R of the hypothetical 
jet axis and each pair of partons are separated by less than R x RF2 they are 
merged into a single jet. Repeat this step until all 3 parton configurations have 
been considered. 

2. Consider the possible 2-cluster configurations by calculating their &-weighted jet 
axis as if they were clustered. If both partons are within R of the hypothetical jet 
axis and are separated from one another by less than R x R!g they are merged 
into a single jet. Repeat this step until all 2 cluster configurations have been 
considered. 

It is possible for two 2-parton clusters to overlap. These situations are resolved in the 

following fashion: 

3. If the shared parton contributes more than 75% of the ET of either jet, all three 
partons are merged. If not, the shared parton is assigned to the jet to whose axis 
it is closest in 7-4 space. 
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4. Apply the appropriate minimum transverse energy and rapidity cuts to the entries 
in the jet-list to find the final set of jets. 

Note that our implementation of the R,, p arameters and overlap resolution condition 

are ad hoc, not tuned to the data as Rfd was for the NLO 2-jet calculation. For the 

NLO 3-jet calculation, it could be that Ei!zi should take on a different value Than R!zi, 
that a different overlap resolution prescription will be preferred, or that additional 
parameters will be needed to accurately describe the data. 

(d) The “KT” algorithm 
This algorithm finds its roots in the efe- environment. Its adaptation to the pji 

environment was proposed in ref. [ 111. Th e a lg orithm is currently under study in CDF 

and DO [12]. 0 ur implementation is based on ref. [22]: 

1. For each cluster, i, define a “closeness” to the beam as d,b = ETi&. For each pair 
of clusters i, j, define their closeness to one another as dij = mh{ET;, ETj}AIZ;j. 

2. Choose the cluster closest to the beam (min{d;b}). If min{d;;} < dibr mergej into 
i, and remove j from the cluster list. If all dij > dia, jet i is said to be “complete.” 

3. Go to step 1 until all jets are complete. 

4. Apply the appropriate rapidity and transverse energy cuts to select the final set 

of jets. 

All of the basic physics involved in the KT clustering algorithm was already present in 
the 3 parton final states. Like the fixed cone algorithm, the KT algorithm unambigu- 
ously assigns additional partons to jets, no matter how many are added. 

The numerical stability of the four jet algorithms is related to the degree in which the 
algorithm is sensitive to soft radiation, or in other words the infrared stability of the particu- 
lar algorithm. For the method of resolved partons, as is used in this paper, infrared stability 
is related to the extent to which the results are independent of the the resolution parameter 
J,i,. This dependence is shown in fig. 1 and will be discussed in the next section. 

4 Numerical Results 

The calculation presented in this paper includes only the gg --) ggg and gg --f gggg contri- 
bution to the NLO 3-jet cross section. This means that any comparison with experimental 
results would be premature. However, there are several issues we can address in the context 
of investigating the numerical applicability of the resolved parton approach. First, we can 
get a first impression of the size of the radiative corrections in the inclusive 3-jet cross section 
by comparing the all-gluon LO 3-jet results with the NLO 3-jet results. Second, we can start 
to look at questions related to the jet-algorithms and to what extent observables depend on 
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the choice of algorithm. We will look at two particular sets of observables. The first set 

is the transverse energy distribution of the leading, second and third jet in the event. The 
second set involves the transverse energy fraction of the leading, second and third jet. 

For all numerical results in this section we used the CTEQ3M [23] parton distribution 
functions (PDF’s), a fixed renormalization/factorization scale of 100 GeV and a center of 

mass energy of the pp-system equal to 1800 GeV. Th e xe scale is needed at NLO because fi d 
we calculate the gluons-only cross section. The full PDF’s, including the quarks, are evolved 
up to Q = 100 GeV. The input gluon PDF is then taken at this scale and not evolved any 
further by fixing the factorization scale at 100 GeV. In this manner we get a consistent 
cross section with only gluons (i.e. taking the number of flavors equal to zero) at NLO. To 
select events we required at least one jet with ET > 50 GeV in the rapidity region, ]n( < 4. 
Additional jets were required to have ET > 20 GeV and rapidity in the range ]q] < 4. Only 
events with at least three jets in the final state were selected. The cone sizes were chosen 
differently per algorithm such that they give approximately the same cross section. The 
“iterative-cone” algorithm uses the same cone size of 0.7 as is usually chosen experimentally. 
In the “EKS” algorithm the cone size was chosen to be 0.7 with R!EL = Rgi = 1.3 as is 
common in the NLO 2-jet calculations. In order to accommodate the larger “effective” cone 
of the two previous algorithm we chose the Yixed-cone’ algorithm to have a larger cone, 
R = 0.7 x 1.3 = 0.91. Finally for the “K T”-clustering algorithm the closeness parameter is 
set to & = 1.0 (note that this quantity is not really a cone size). 

The first issue to be considered is the J,i, -dependence of the cross section and the 
determination of the range in which we can choose its value such that the approximations 
made in the different numerical methods are valid. The results are shown in fig. 1 for both 
the slicing and subtraction method (the exact method has not yet been implemented) and 
all four types of jet algorithms. The first thing to notice is that the behavior of the iterative 
cone algorithm is quantitatively different from that the three other algorithms. The other 
three algorithms behave as expected and it is clear how to choose s,,, for them. For the 
slicing method one has to choose J,i, smaller than 1 GeV2 in order to get the correct answer. 
As expected the subtraction method allows us to choose larger values of s,i,, though the 
value should still not be larger than 10 GeV’. For the results presented later in this section 
we will use the subtraction method with J,in = 2.5 GeV2. 

We now consider the iterative cone algorithm. As can be seen in fig. lc, the cross section 
does not become independent from the resolution parameter, even at very small values of 
J,i,. In fact the behavior fits very well to a logarithmic dependence on the resolution 
parameter. Th’ is means that the algorithm is not infrared safe in that we can change the 
jet multiplicity by adding a soft parton somewhere in the event. It is obvious that this can 
occur when we can have three parton configurations in which two of the partons are slightly 
more than the cone size R apart balancing the leading third parton. For the tree level and 
virtual contributions this is a three jet event. The situation should not change if we add 
a soft parton in between the two nearby partons, and in fact it does not change for any 
of the jet algorithms besides the iterative cone. The soft parton gets clustered with one of 
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Figure 1: The J,,,- dependence of the cross section for the different jet algorithms and 
numerical methods. 
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the hard partons, slightly changing the jet parameters, but not affecting the jet multiplicity. 
In the case of the iterative cone however, one of the two hard partons will cluster with the 
soft parton thereby shifting its jet-axis to within R from the other parton. Because of the 
iterative nature of this algorithm the two clusters will subsequently be merged further into a 

single jet yielding a two jet final state. Thus, we have changed the jet multiplicity by adding 
an arbitrarily soft parton to the event. As a result the algorithm is infrared unstable and 

cannot be used within the context of perturbative &CD. Experimentally this means that 
the jet algorithm depends on the implicit soft cut-offs in the detector, e.g. granularity of the 
detector, cluster cut-off and ultimately hadron masses. In other words, the jet multiplicity 

depends on the ability of the detector to resolve and measure soft hadrons. It is clear that 

we cannot use this algorithm within the NLO calculation. Note that this result does not 

make the one- and two-jet inclusive cross section infrared unstable since in those cases we 
do not have to resolve three-jet configurations. Both CDF and DO have compared their 

multi-jet data (i.e. more than two jets in the final state) with LO monte carlo’s (10, 241. 
It is interesting to note that the experiments have in fact added an additional cut to their 
multi-jet cross section in order to make these comparisons. This cut requires all the jets 
in the event to be further apart then their cone-size of R = 0.7. For CDF this cut was 
ARjj > 1.0, while for DO the requirement is ARjj > 1.4. This additional requirement to 
the jet algorithm changes the S,in- dependence of the cross section dramatically, as can be 

seen clearly in fig. lc. In fact the behavior is now very similar to the other three algorithms. 
This is no surprise since with this additional selection cut the infrared instability is removed. 
This means that the iterative cone algorithm needs to be augmented with a jet separation 
cut in order to be an infrared safe jet algorithm. 

The most basic distributions we can look at are the ET-ordered transverse energy dis- 
tributions. These distributions are given in fig. 2 for various jet algorithms. The curves are 
fits to M.C. output and have a fit-uncertainty associated with them. The fit uncertainty for 
the leading jet is shown in fig. 2d where the leading jet K-factor (i.e. the ratio of NLO over 
LO) is given together with the 1-c boundary on the fit. The uncertainties on the second and 
third jet are very similar in size and ET-dependence. As can be seen from figs 2a, 2b and 

2c the differences between the jet algorithms are small and stable, especially when taking 
the fit-uncertainties into account. The LO normalization is highly uncertain because it is an 
a&process and therefore very dependent on the value of as (i.e. at LO the renormalization 
scale choice). The radiative corrections, however, show more structure than a simple nor- 

malization shift. The radiative effects can be quite substantial, with a K-factor as large as 
three for ET = 350 GeV. There are two reasons for these large corrections. Note that the 
minimum in the K-factor for leading jet occurs at ET = 100 GeV, exactly at the renormal- 

ization/factorization scale choice. This is no accident. Usually one would choose this scale 
to be equal/proportional to the leading jet ET. For the gluons-only process, however, this 
would require evolving the PDF’s with nf = 0. So, part of the large corrections away from 
ET = 100 GeV are due to the choice of renormalization/factorization scale which generates 
large logarithmic corrections at higher orders. The second reason is that we look at gluons 
only, while evolving the PDF’s to a scale of 100 GeV using both quarks and gluons. This 
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means the gluon content of the proton and therefore the size of the radiative corrections 
in the gluons-only case depend on the mass factorization scheme used in the PDF and ma- 
trix element. Any conclusions on the radiative corrections in the full case (i.e. including the 
quark processes) is therefore premature. Note that in the MS-scheme used in this calculation 
the contribution of gluon initiated scattering at E T = 350 GeV is very small. The scattering 
at such large momentum transfers is dominated by t-channel quark scattering, making the 
size of the gluons-only K-factor irrelevant. 

The final observable we will look at in our investigation of the stability of the NLO 3-jet 

event generator is the transverse energy fraction X!$ = 2E$)/ Ci=i Ep’ of the three leading 
jets (in transverse energy) in the event. These are different from the usual observables used 
by the experimentalists (see e.g. the CDF papers [9, 241). They look at the energy fraction 
X(‘) = 2,9’)/Mjjj h w ere the energies are defined in the center of mass frame of the collision 

and Mjjj is the invariant mass of the three leading jets. We have chosen the transverse energy 
fractions because they do not require the determination of the center of mass reference frame. 
At NLO, this frame is strongly dependent on the ability to detect forward radiation, making 
the NLO prediction rather unstable and detector dependent. The transverse energy fraction, 
on the other hand, behaves more stably and radiative effects are small. This can be seen in 
fig. 3 where the normalized LO and NLO transverse energy fraction distributiyys are plotted 
for several jet algorithms. Also shown is the K-factor for the normalized XT1 -distribution 
together with its fit-uncertainties. The radiative corrections for these distributions are in 
general small, except at the edge of LO phase space where the jet-algorithm sensitivit also 
becomes large. (At LO the transverse energy fractions are constrained to 2/3 < X!$ < 1, P 

l/2 < X$?) < 1 and 0 < X$) < 2/3, not taking any &-cuts into account.) The NLO 3-jet 
event generator is capable of predicting these distributions accurately enough for comparisons 
with experiments. 

5 Conclusions 

In this paper we have presented results on the purely gluonic contribution to the NLO 3-jet 
cross section. All of the techniques used can be readily applied to the quark contributions. 
Several techniques to isolate the soft/collinear contributions were explored and their numer- 
ical effects investigated. 

All of the relevant experimental jet algorithms were implemented in the NLO 3-jet event 
generator and their radiative effects studied. For the iterative cone algorithm it was nec- 
essary to augment the algorithm with an additional jet separation cut in order to obtain 
infrared stability. Both CDF and DO already apply such a cut in their multijet analysis, 
though the reason is the inefficiency of the cluster algorithm instead of the theoretically 
motivated removal of the infrared instability. The other jet algorithms behaved properly 
and no additional cuts were needed. 
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Figure 3: The XT-spectra of the (a) leading, (b) second and the (c) third jet and (d) the 
K-factor for the leading jet as a function of XT. 
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The NLO S-jet event generator was applied to several distributions and it was demon- 
strated that one could obtain useful results which can be compared to the experimentai data, 

once the quark matrix elements are included. 
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